Administratie | Alimentatie | Arta cultura | Asistenta sociala | Astronomie |
Biologie | Chimie | Comunicare | Constructii | Cosmetica |
Desen | Diverse | Drept | Economie | Engleza |
Filozofie | Fizica | Franceza | Geografie | Germana |
Informatica | Istorie | Latina | Management | Marketing |
Matematica | Mecanica | Medicina | Pedagogie | Psihologie |
Romana | Stiinte politice | Transporturi | Turism |
INDICATORI AI VARIABILITATII
Din aceasta grupa fac parte:
amplitudinea variatiei (absoluta si relativa);
abaterile individuale (absolute si relative).
Amplitudinea absoluta (A) se calculeaza ca diferenta intre nivelul maxim si nivelul minim al caracteristicii.
A = xmax - xmin
Amplitudinea relativa a variatiei (A%) se exprima in procente si se calculeaza ca raport intre amplitudinea absoluta a variatiei si nivelul mediu al caracteristicii.
A% =
Amplitudinea se foloseste la controlul calitatii produselor prezentand importanta si din punct de vedere metodologic, fiind folosit in prima faza a prelucrarii statistice la stabilirea numarului de grupe si a marimii intervalului de grupare.
1. Indicatorii sintetici ai variatiei
Indicatorii sintetici ai variatiei trebuie sa se bazeze pe toate observatiile, sa fie usor de calculat, cat mai putin afectati de fluctuatiile de selectie daca datele provin dintr-o cercetare statistica partiala pentru care trebuie verificata si reprezentativitatea esantionului.
Indicatorii sintetici ai variatiei sunt:
abaterea medie liniara;
abaterea medie patratica;
dispersia;
coeficientul de variatie.
1.1. Abaterea medie liniara ()
Se mai numeste variatie medie, deviatie medie, abatere absoluta medie sau abatere liniara medie si se poate calcula atunci cand media este un bun indicator al tendintei centrale. Acest indicator informeaza asupra modului in care se abat, in valori absolute, rezultatele de la medie, acordand aceeasi pondere tuturor variabilelor. Abaterea medie se poate calcula pe date grupate sau pe date discrete. ( Bentea, M, Munteanu, G , 2007).
Se calculeaza ca medie aritmetica simpla sau ponderata a abaterilor termenilor seriei de la media lor, luata in valoare absoluta.
Pentru o serie simpla:
Pentru o serie de distributie de frecvente absolute:
Pentru o serie cu frecvente relative, exprimate in procente:
Exemplu:
Pentru 200 de persoane s-au sistematizat datele culese cu privire la timpul zilnic petrecut in fata televizorului rezultand:
Timp (min) |
Numar de persoane ni |
xi |
xi*ni |
xi - |
|
*ni |
(Pana la 30) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 si peste |
|
|
|
|
|
|
Sa se calculeze abaterea medie liniara.
1.2. Dispersia (varianta) unei caracteristici ()
Atunci cand putem utiliza media, un indicator frecvent este indicatorul dispersiei sau indicatorul variantei (atentie, nu variatie ci varianta) notat cu sigma patrat pentru populatie sau s2 in cazul unui esantion.
Se calculeaza ca medie aritmetica simpla sau ponderata a patratelor abaterilor termenilor seriei fata de media lor.
Formula de calcul a dispersiei este urmatoarea, in care xi reprezinta valoarea masurata, x barat media iar N numarul de masuratori.
- pentru o serie simpla
pentru o serie cu frecvente absolute
pentru o serie cu frecvente relative, exprimate in procente
Exemplu: Pentru 200 de persoane s-au sistematizat datele culese cu privire la timpul zilnic petrecut in fata televizorului rezultand:
Timp (min) |
Numar de persoane ni |
xi |
xi*ni |
xi - |
(xi-)2 |
(xi-)2*ni |
(Pana la 30) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 si peste |
|
|
|
|
|
|
T=11490 T=182299
Sa se calculeze dispersia.
=57,45
1. Abaterea medie patratica (abaterea tip sau abaterea standard)
Se noteaza cu s in cazul unui esantion sau cu sigma in cazul unei populatii si o putem intalni sub numele de abatere etalon, abatere tip, abatere patratica medie. Acest indicator este cel mai precis si inteligibil pentru masura gradului de imprastiere
a rezultatelor in jurul tendintei centrale si contribuie la definirea distributiei normale. Poate fi calculat si dobandeste semnificatie numai atunci cand poate fi calculata media.
Abaterea patratica medie este radacina patrata din media aritmetica a patratelor abaterilor valorilor observate in raport cu media lor aritmetica.(Petrus, Al., 2005, p.52) .
Relatiile de calcul ale abaterii mediei patratice sunt:
pentru o serie simpla
Daca privim cu atentie aceasta formula, constatam ca expresia de sub radical nu este altceva decat varianta. Prin urmare, dupa ce calculam varianta, putem afla usor abaterea standard extragand radicalul de ordin doi din varianta.
pentru o serie de frecvente absolute
pentru o serie de frecvente relative, exprimate in procente
Exemplu:
30.19 minute
IV.1.4. Coeficientul de variatie ()
Prezinta, mai intuitiv decat abaterea standard, gradul de imprastiere al rezultatelor in jurul mediei, deoarece este o expresie procentuala a impartirii abaterii standard la medie.
Se calculeaza ca raport intre abaterea medie patratica si nivelul mediu al seriei, deoarece abaterea standard se foloseste frecvent pentru masurarea abaterii medii.
Formula de calcul este:
sau (daca s-a calculat abaterea medie liniara )
Cu cat nivelul lui este mai apropiat de zero cu atat variatia este mai redusa, colectivitatea este mai omogena, media avand un grad mai ridicat de reprezentativitate; cu cat valoarea sa este mai departe de zero, cu atat variatia este mai intensa, colectivitatea mai eterogena, iar media are un nivel de semnificatie mai scazut.
Acest document nu se poate descarca
E posibil sa te intereseze alte documente despre: |
Copyright © 2024 - Toate drepturile rezervate QReferat.com | Folositi documentele afisate ca sursa de inspiratie. Va recomandam sa nu copiati textul, ci sa compuneti propriul document pe baza informatiilor de pe site. { Home } { Contact } { Termeni si conditii } |
Documente similare:
|
ComentariiCaracterizari
|
Cauta document |