Administratie | Alimentatie | Arta cultura | Asistenta sociala | Astronomie |
Biologie | Chimie | Comunicare | Constructii | Cosmetica |
Desen | Diverse | Drept | Economie | Engleza |
Filozofie | Fizica | Franceza | Geografie | Germana |
Informatica | Istorie | Latina | Management | Marketing |
Matematica | Mecanica | Medicina | Pedagogie | Psihologie |
Romana | Stiinte politice | Transporturi | Turism |
PRODUS CARTEZIAN AL UNEI FAMILII DE MULTIMI
Fie I si A o multime oarecare; o functie φ: I A se mai numeste si multime indexata de elemente din A dupa multimea de indici I (sau familie de elemente din A indexata dupa I ). Se noteaza
φ = (ai)iII = (ai)i, unde ai = φ(i).
Daca I = , atunci folosim notatia (ai)iII = (a1, a2, . , an) si (a1, a2, , an) se mai numeste n-uplu.
Daca elementele lui A sunt multimi (sau submultimi ale unei multimi T) obtinem
notiunea de familie de multimi (resp. familie de submultimi a lui T).
Fie (Ai)iII o familie de multimi. Atunci multimile
Ai , resp. Ai =
iII iII
se numesc reuniunea, resp. intersectia familiei (Ai)iII
Fie (Ai)iII o familie de multimi. Multimea
Ai =
iII iII
se numeste produs cartezian sau produs direct al familiei (Ai)iII
Astfel, putem scrie:
Ai = .
iII
Daca Ai = A oricare ar fi i I I, atunci produsul cartezian nu este altcineva decat multimea AI = . Daca I = , atunci notam iII Ai cu A1 x A2 x x An. Deci A1 x A2 x x An = . In cazul n = 2 obtinem produsul cartezian a doua multimi introdus in §1. Daca A1 = A2 = . = An = A vom nota An = A1 x A2 x x An. Fie i I I; functia pi : jII Aj Aj, definita prin egalitatea pi(φ) = φ(i) I Ai, unde φ I jII Aj (sau pi((xj)jII) = xi) se numeste i-proiectia canonica a produsului cartezian pe multimea Ai.
In teoria multimilor se admite urmatoarea axioma:
Axioma alegerii. Daca (Ai)iII este o familie nevida de multimi nevide, atunci
Ai
iII
Echivalenta cu axioma alegerii este urmatoarea afirmatie: daca S este o colectie nevida de multimi nevide disjuncte doua cate doua, atunci exista o multime A, numita multime selectiva, astfel incat A X este formata dintr-un singur element oricare ar fi XI S.
Acest document nu se poate descarca
E posibil sa te intereseze alte documente despre: |
Copyright © 2025 - Toate drepturile rezervate QReferat.com | Folositi documentele afisate ca sursa de inspiratie. Va recomandam sa nu copiati textul, ci sa compuneti propriul document pe baza informatiilor de pe site. { Home } { Contact } { Termeni si conditii } |
Documente similare:
|
ComentariiCaracterizari
|
Cauta document |