Energiile care se imprima particulelor-proiectil, sunt diferntiate. Energia necesara pentru a "patrunde" in dimensiunea de 10-10 m este de 0,002 MeV, dar pentru a patrunde pana la nucleu (10-14 m) este nevoie de o energie de 10.000 de ori mai mare (20 MeV). In ce priveste patrunderea in intimitatea nucleului, la dimensiuni de 10-16 m, este nevoie de o energie de 2000 MeV (adica 2 GeV), iar pentru a ajunge in "interiorul" nucleonilor (10-18 m) este nevoie de energii de peste 200 GeV.
Desigur, pentru a putea efectua experiente in lumea subatomica sunt necesare instalatii in care sa fie produse particule-proiectil, apoi aceste particule sa fie organizate in fascicule de energii mari (adica sa fie accelerate) si, in fine, sa aiba o posibilitate de a pune in evidenta rezultatele interactiilor (detectoare de particule). Aceste instalatii numite acceleratoare, au insotit cu mult succes pe fizicieni in cercetarile lor, ramanand si in prezent principalul instrument de lucru in lumea microcosmosului.
Astfel a aparut o noua ramura a fizicii nucleare, cea a acceleratoarelor, in care tehnicienii, pentru a asigura un singur deziderat principal - fascicule de energii din ce in ce mai mari - au avut de invins obstacole deosebite.
Particulele care sunt accelerate in aceste instalatii pot fi, dupa caz : electroni, pozitroni, protoni, antiprotoni, deutoni, precum si nuclee ale unor elemente usoare sau medii. Totdeauna insa este vorba de particule ce poseda sarcini electrice, asupra carora pot actiona oportun forte electrice si magnetice, astfel incat sa le aduca la un nivel energetic ridicat. Neutronii, in schimb, sunt totdeauna produsi fie prin intermediul unor anumite reactii nucleare, fie prin bombardarea unor nuclee special alese cu proiectile convenabile.